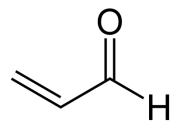
ОТРАБОТКА УСЛОВИЙ ПРОБООТБОРА ДЛЯ ОПРЕДЕЛЕНИЯ АКРОЛЕИНА В АТМОСФЕРНОМ ВОЗДУХЕ НА УРОВНЕ РЕФЕРЕНТНОЙ КОНЦЕНТРАЦИИ

Заверненкова Екатерина Олеговна


научный руководитель: д.б.н. Уланова Татьяна Сергеевна

Федеральное бюджетное учреждение науки «Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения» г. Пермь, Россия

Акролеин актуальность

Акролеин – один из приоритетных загрязнителей окружающей среды ИСТОЧНИКИ ЗАГРЯЗНЕНИЯ АКРОЛЕИНОМ:

- •нефтехимическая, электротехническая, лакокрасочная промышленности
- •производство стеарина, акриловой кислоты, глицерина
- •сжигание органического топлива, выхлопные газы автотранспорта
- •нагрев жиров при приготовлении пищи

В УСЛОВИЯХ ХРОНИЧЕСКОЙ ЭКСПОЗИЦИИ ОКАЗЫВАЕТ:

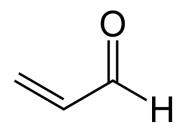
- •общетоксическое
- •мутагенное
- •раздражающее
- •эмбриотоксическое
- •аллергенное действие

- •ПДКсс=0,03 мг/м³;
 - •ПДКмр=0,03 мг/м³;
- •RfC=0,00002 мг/м³ для хронического ингаляционного воздействия;
 - •RfC= $0,0001 \text{ мг/м}^3$ для острых ингаляционных воздействий;

Акролеин актуальность

Акролеин –

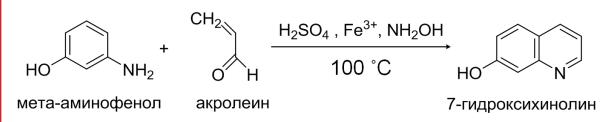
инение Н

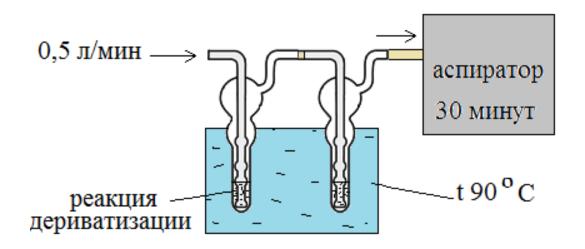

Высоко реакционноспособное летучее органическое соединение

Способы пробоотбора	Примеры	потери акролеина при
Отбор в жидкие поглотительные среды	дистиллированная вода, этанол, смесь перманганата и йодной кислоты, солянокислый спиртовый раствор тиосемикарбазида	хранение проб; невысокая степень обогащения пробы; селективность; высокая
отбор в раствор с дериватизирующи м агентом	2,4-динитрофенилгидразин, мета- аминофенол, о-(2,3,4,5,6-пента- фторбензил) гидроксиламин;	чувствительность реакции; стабильность при хранении;
отбор на твердые сорбенты	силикагель, активированный уголь, диатомит, тенакс ТА, порапак N, цеолит 13X	сложность выбора эффективного способа десорбции; проблема накопление паров воды; проскок акролеина; потери акролеина при хранении отобранных проб

ЦЕЛЬ ИССЛЕДОВАНИЯ — отработка способа пробоотбора путем дериватизации определяемого соединения на стадии отбора пробы в рамках разработки методики определения акролеина в атмосферном воздухе на уровне референтной концентрации (RfC).

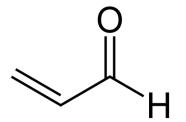
пробоотбор пробоподготовка анализ проб


Акролеин пробоотбор


Состав реакционной смеси:

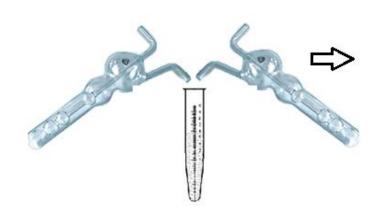
мета-аминофенол (C=0,023 моль/дм³) - 3 см³ гидроксиламина гидрохлорид (C=0,086 моль/дм³) - 1,5 см³ Сульфат железа (III) (C=5,6 мг/см³) - 0,3 см³ Серная кислота (16 %) - 0,3 см³ Дистиллированная вода -

Реакция дериватизации акролеина в процессе пробоотбора:



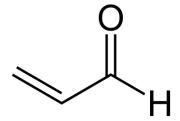
аспирация

 0.9 cm^3

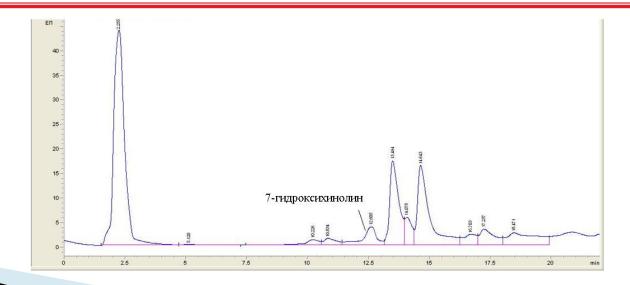

Акролеин пробоподготовка

упаривание поглотительного раствора с отобранной пробой в вакуумном концентраторе при температуре 40 °C

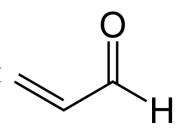
> концентрирование


повышение чувствительности анализа в 24 раза

Акролеин анализ проб

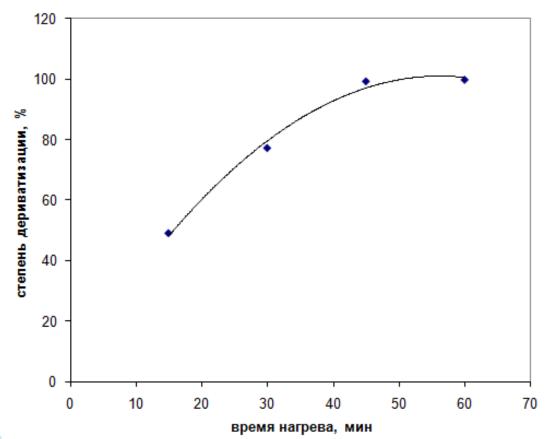


Идентификация устойчивого производного акролеина, образованного в процессе пробоотбора методом высокоэффективной жидкостной хроматографии (ВЭЖХ):

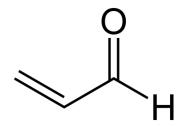


Оптимальные условия анализа 7-гидроксихинолина методом ВЭЖХ:

колонка с обращенной фазой; элюент: фосфорная кислота(рH=2,69), ацетонитрил/метанол(3:1) **скорость потока**: 0,2 см³/мин; **температура колонки**: 27°С **Флуориметрический детектор**: λ эм=501нм, λ возб=243нм



Акролеин зависимость степени дериватизации от времени нагрева реакционной смеси



С целью определения оптимального времени нагрева реакционной смеси в процессе пробоотбора строили графическую зависимость степени дериватизации акролеина от времени нагрева:

Время нагрева, мин	Степень дериватизации, %	
15	49,2	
30	77,3	
45	99,3	
60	99,8	

Акролеин выводы

Экспериментальным путем подобраны оптимальные условия проведения реакции дериватизации в процессе пробоотбора:

- Оптимальное количественное соотношение реактивов мета-аминофенола, гидроксиламина солянокислого, серной кислоты и катализатора $Fe_2(SO_4)_3$ в поглотительном растворе (10:5:1:1) обеспечивает образование деривата (7-гидроксихинолина) с выходом 85 %;
- **В** качестве оптимального был выбран 45-минутный нагрев реакционной смеси в процессе пробоотбора;
- проведение реакции дериватизации при температуре 92 °C в момент отбора проб со скоростью 0,5 л/мин позволяет повысить чувствительность в 70 раз;
- Использование вышеизложенных методических приемов позволяет достигнуть необходимой чувствительности методики для определения акролеина в атмосферном воздухе на уровне референтной концентрации;

Полученные результаты использованы для разработки методики определения акролеина в атмосферном воздухе на уровне референтной концентрации.

Спасибо за внимание!

