ФБУН «Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения»

Пространственно-временной анализ шумового и электромагнитного загрязнения воздуха крупного промышленного города для задач оценки риска для здоровья населения

д.б.н., проф., Май Ирина Владиславовна Бапашов С.Ю.

Оценка экспозиции – важнейший этап оценки риска

International Society of Exposure Science

NO e

NO exposure –NO risk

Международные конференции по оценке экспозиции

Atlanta, Georgia, США	1991 (1st)
Noordwijkerhout, Нидерланды	1995 (5th)
Athens, Греция	1999 (9th)
Charleston, South Carolina, США	2001 (11th)
Vancouver, Канада	2002 (12th)
Brassels, Бельгия	2004 (14th)
Paris, Франция	2006 (16 th)
Seoul, Корея	2010 (20 th)
Milan, <mark>Италия</mark>	2011 (21th)
Edinburg, Великобритания	2012 (22 th)
Basel, Швейцария	2013 (23 th)

Уровни акустических воздействий на среду обитания человека остаются высокими

Россия:

- **⇒** в условиях шумового дискомфорта, выше 75 дБ, в настоящее время живет 35 млн. человек, или 30% городского населения страны;
- воздушные трассы из более 300 аэропортов проходят над населенными пунктами

Украина:

среднестатистический город Украины имеет площадь акустического дискомфорта примерно 40%

Белоруссия:

э в Минске и большинстве областных центров Беларуси, акустический дискомфорт испытывают от 17% до 40% городских жителей

Таджикистан:

60-80% населения Душанбе, Худжанда, Курган-Тюбе подвержены шумовому воздействию. Уровень городского шума достигает более 80-85 ДбА

Растет электромагнитная нагрузка на среду обитания

На контроле Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека Российской Федерации находится более чем 489 тыс. источников электромагнитных полей, из них 115,8 тыс. являются передающими радиотехническими объектами.

Зарегистрировано более **9,9 тыс**. объектов теле- и радиовещания, которые характеризуются передатчиков и расположением в пределах селитебных территорий.

Количество абонентов сотовой связи в Российской Федерации растет ежегодно и составило 242 млн 790 тыс. (число SIM-карт)^{1.}

Проникновение сотовой связи в Москве на конец сентября 2013 г. составило **213,4%**;

в Санкт-Петербурге - 208%,

в регионах РФ - **164%** (по числу SIM-карт; по числу абонентов - 73%)

1. по данным аналитического отчета areнтства Advanced Communications & Media (AC&M)

Пространственный анализ уровней загрязнения позволяет решить целый комплекс задач:

- оценивать уровень фактора сразу для значительного числа лиц
- выделять зоны с различным уровнем экспозиции, а следовательно - определять наиболее проблемные территории и зоны наибольшего благоприятствования
- оценивать численность населения под воздействием
- оптимизировать систему инструментальных наблюдений, концентрируя усилия на участках с наибольшими уровнями загрязнения
- обосновывать градостроительные и иные пространственные решения

Формирование базы по источникам шума – первый шаг в оценке экспозиции

Источники данных:

- техническая документация хозяйствующих субъектов (стационарные промышленные источники шума)
- <mark>паспортные данные</mark> типовых источников шума (транспорт, объекты соц-культбыта, пр.)
- данные литературы или специальных исследований (иные источники шума)

Дальнейшая обработка – в геоинформационной системе

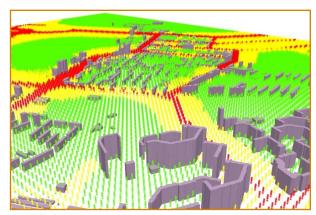
Для привязки источников шума могут быть использованы готовые тематические векторные слои, подготовленные в ГИС, например в формате *shp, с набором атрибутивных данных по каждому объекту. Например: земельные отводы, здания и сооружения, автодороги, ж/д дороги и т.д.

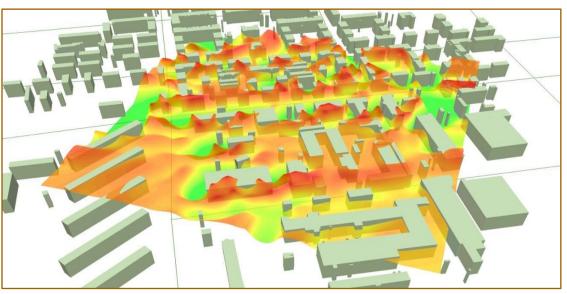
Выполнение акустических расчетов проводится с использованием специализированных программных продуктов, реализующих действующие нормативные документы на территории России(СП 51.13330.2011 Защита от шума. Актуализированная редакция СНиП 23-03-2003) К таким программам относятся:

- программный комплекс «Эколог-Шум»(НПП «Интеграл», г. Санкт-Петербург)
- программный продукт ПК «Шум» (НПП Логус),
- APM «Акустика-3D» (ООО «Технопроект»); Возможно использование зарубежных программных комплексов

Шумовая карта - разовая «фотография» акустической ситуации на конкретный момент или заданный период времени

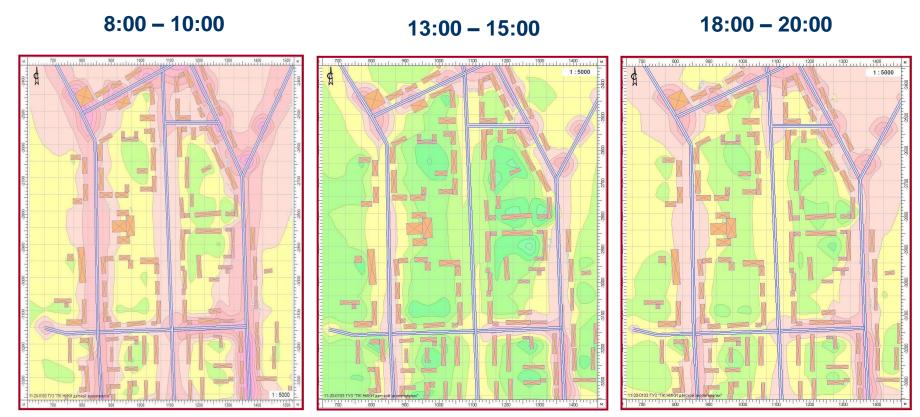
Общая площадь авиационного «зашумления» в границах г. Перми составляет более 210 км², в центральной части г.Перми – 19,66 км². Под воздействием – около 200 тыс человек


Сопряжена с адресным реестром, с базой данных ФОМС

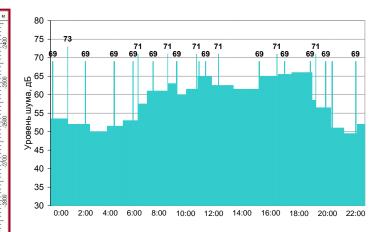

Зоны акустического дискомфорта - до 60% жилых территорий

Адрес	до дома, м	Шум, дБ
Ш.Космонавтов, 90	90	60
Рабочая, 1	90	60
Челюскинцев, 4/1	30	64
Самолетная,с17ческие р	ас405 ш	ума 5 9
Молодежная, 2	й дороги 52	72
1-я Бахаревская, 25	35	76

3D шумовая карта позволяет оценивать изменение акустической нагрузки по высоте



Временной фактор – вторая составляющая экспозиции



Шумовая карта - это динамическая система распределения шумовой нагрузки на территории с использованием массива данных о стационарных и передвижных источниках шума территории и интенсивности их функционирования во времени

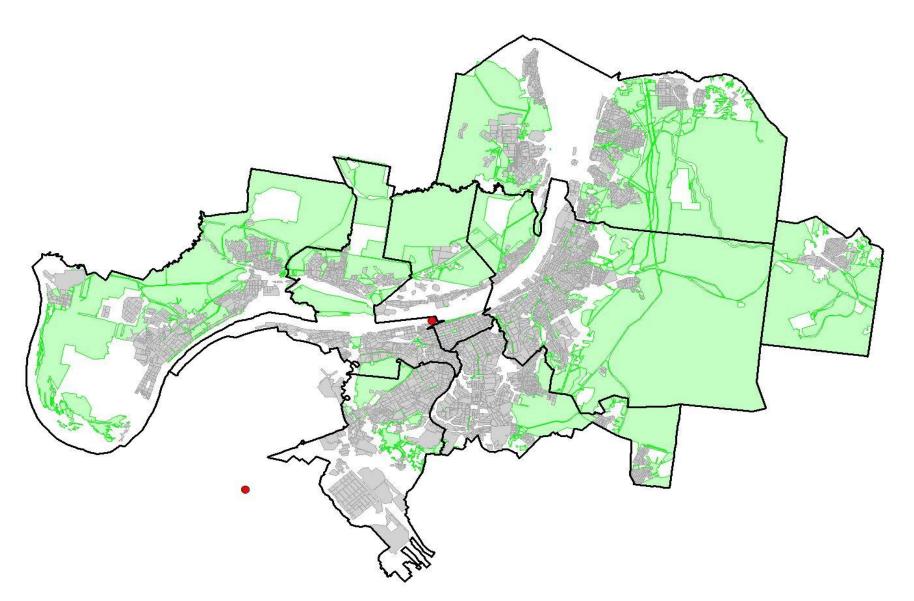
Расчет акустических доз выполняется через создание суточных сценариев шумовой нагрузки

$$L_{den} = \frac{L_{t1}^{i} \cdot p_{1} + L_{t2}^{i} \cdot p_{2} + ... L_{tn}^{i} \cdot p_{n}}{p_{1} + p_{2} + ... p_{n}}$$

«Методические рекомендации по оценке риска здоровью населения от воздействия транспортного шума»

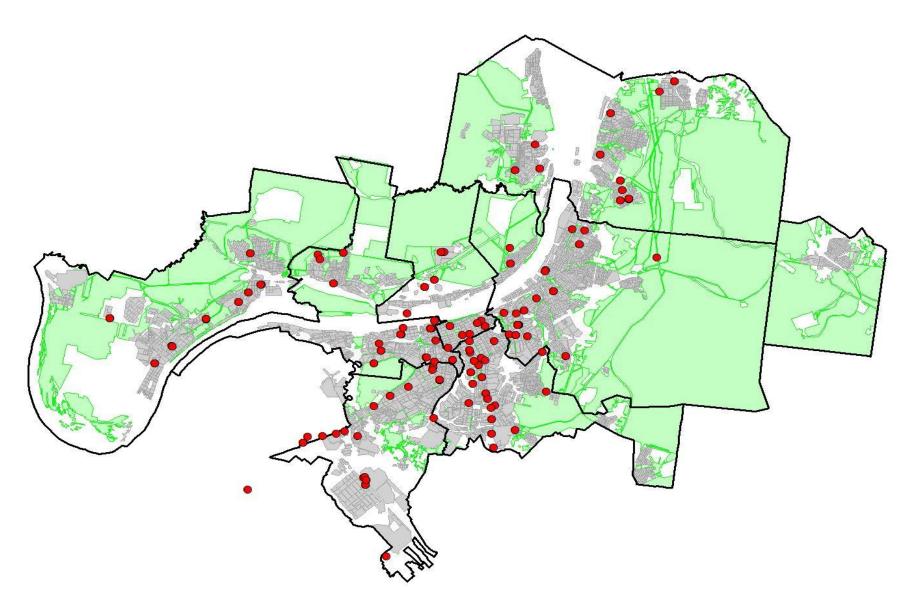
MP 1.2.1.059 -12

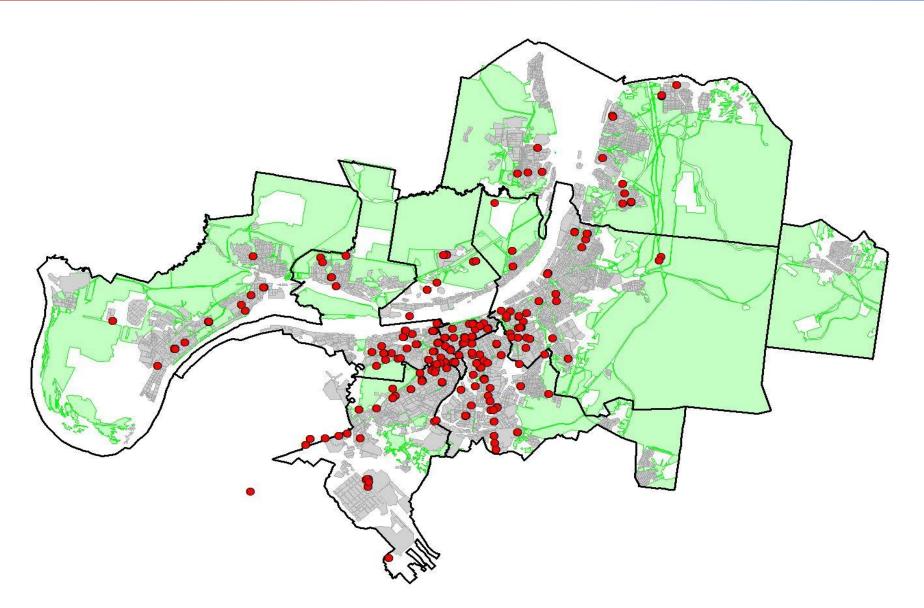
Суточная шумовая фотография



Экспозиция шума оценивается по результатам анализа хронологии и длительности шумовых событий на изучаемой территории

		Шум, дБ		Продолжи-	Доля
Время суток	Источник шума	Внешний		тельность	времени
	источник шума		проникающий	шумового	события от
		(Э)		события, мин	суток (р)
0:00-02:00	автотранспорт,	48	36	120	0,0830
	кафе, клубы				•
02:00-04:00	автотранспорт,	43	31	120	0,0830
	пасс. поезд	69	57	6	0,0042
	пролет самолета	75	63	4	0,0028
	автотранспорт	44,5	32,5	120	0,0830
04:00-06:00	пролет самолета	75	63	4	0,0028
	грузовой состав	71	59	7	0,0049
04.00-00.00	грузовой состав	71	59	7	0,0049
	пролет самолета	75	63	4	0,0028
	пасс. поезд	69	57	3	0,0021
06:00-08:00	автотранспорт,	49,6	37,6	109	0,0757
06.00-06.00	пасс. поезд	69	57	6	0,0042
08:00-10:00	автотранспорт,	58,5	46,5	199	0,1382
10:00-12:00	автотранспорт,	58,8	46,8	120	0,0830
10.00-12.00	пасс. поезд	69	57	3	0,0021
12:00-14:00	автотранспорт,	62,5	50,5	12	0,0083
14:00-16:00	автотранспорт,	61,5	49,5	120	0,0830
16:00-18:00	автотранспорт, кафе, клубы	56,2	44,2	120	0,0830
	автотранспорт,	62,8	43	115	0,0799
40.00.00.00	кафе, клубы		00	4	-
18:00-20:00	пролет самолета	75	63	4	0,0028
	пасс. поезд	69	57	3	0,0021
	грузовой состав	71	59	14	0,0097
20:00-22:00	автотранспорт, кафе, клубы	60,5	43,4	107	0,0743
	пролет самолета	75	63	4	0,0028
22:00-00:00	автотранспорт,	54,8			
	кафе, клубы		42,8	108	0,0750
	грузовой состав	71	59	7	0,0049
	пасс. поезд	69	57	3	0,0021
	пролет самолета	75	63	4	0,0028
Средневзвец	енный суточный шум	55,72			


Пространственная привязка источников ЭМП к электронной карте города

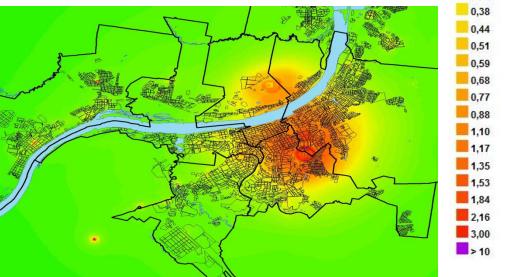

Пространственная привязка источников ЭМП к электронной карте города

Пространственная привязка источников ЭМП к электронной карте города

В качестве основы для выполнения оценки существующего уровня воздействия ЭМП был использован специализированный программный продукт «ПК АЭМО 4.0»

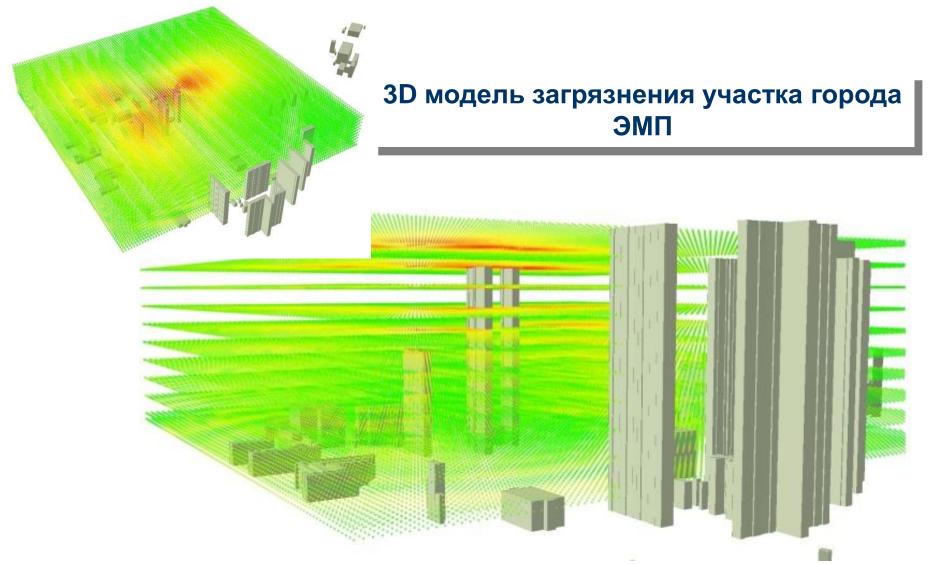
МУК 4.3.1167-02 "Определение плотности потока энергии электромагнитного поля в местах размещения радиосредств, работающих в диапазоне частот 300 МГц-300 ГГц" МУК 4.3.1677-03 "Определение уровней электромагнитного поля, создаваемого излучающими техническими средствами телевидения, ЧМ радиовещания и базовых станций сухопутной подвижной радиосвязи".

Порядка 80% всех расчетных точек характеризовались параметрами ЭМП в диапазоне 0,1-1ПДУ.


КБ

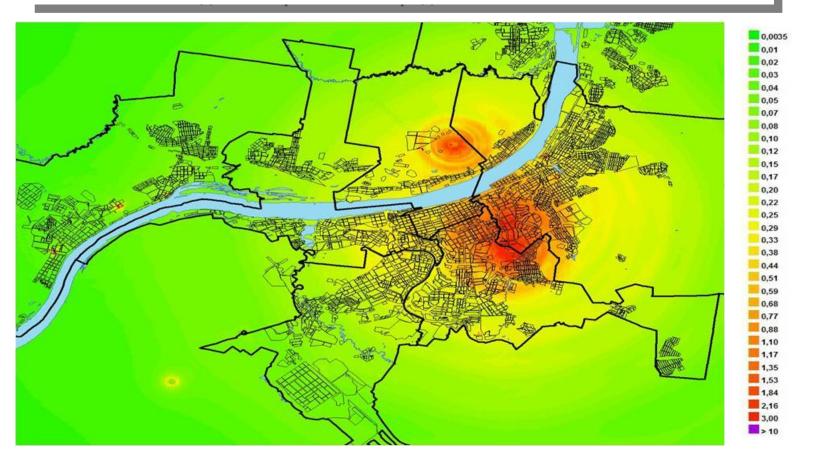
Высота 3 м (первые этажи зданий)

S >ПДУ установлена на площади 5,86 км² 0,0035 0,01 0.02 0,03 0,04 0.05 0,07 0,08 0.10 0,12 0,15 0,17 0.20 0.22 0,25 0,29 0,33


Высота 12 м (3-4 этажи зданий)

S >1ПДУ установлена на на площади 20,9 км2,

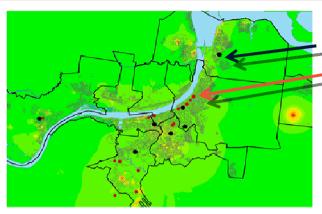
С увеличением высоты до 18 м отмечали рост ЭМП



На высоте 18 м были установлены максимальные уровни ЭМП, что было подтверждено инструментальными исследованиями

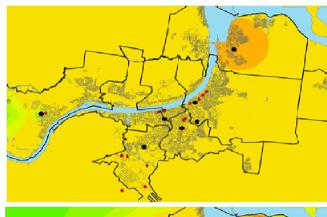
Высота 18 м (6-7 этажи зданий) S >1ПДУ установлена на площади 35,4 км², где расположено более 1000 домов. Проживает порядка 145 тыс. человек

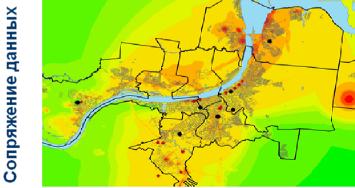
КБ


Задача – оценка временных изменений

$$\vec{9}\vec{9} = \frac{\vec{9}\vec{9}_{j_1}^i \cdot p_1 + \vec{9}\vec{9}_{j_2}^i \cdot p_2 + ... \vec{9}\vec{9}_{j_n}^i \cdot p_n}{p_1 + p_2 + ... p_n}$$

Сопряжение инструментальных и расчетных данных – путь к снижению неопределенности при оценке экспозиции


Расчет рассеивания



Точки мониторинга

- Точки измерений для верификации

Данные постов наблюдения, интерэкстраполяция методом обратных расстояний

 $1) K_i = \frac{C_i^p}{C_i^y}$

В точке размещения поста

2) $K(x, y) = a_0 + a_1 x + a_2 y$ В границах треугольника,

полученного

методом Делоне

4) $C^r(x,y) = K(x,y) \cdot C^p(x,y)$

3) $k_i = K(x_i, y_i) = a_0 + a_1 x_i + a_2 y_i$

Май И.В., Клейн С.В., Чигвинцев В.М., Балашов С.Ю.

Методические подходы к повышению точности оценки экспозиции населения на основе сопряжения расчетных и натурных данных о качестве атмосферного воздуха

// Анализ риска здоровью. № 4, 2013

Погрешности прогноза приземных концентраций диоксида азота в атмосферном воздухе г. Перми (штиль, скорость ветра 0-0,5 м/с, температура воздуха 25-26°С)

$ \overline{\Delta} $			14	$oldsymbol{\Delta}$ (абсолютная ошибка прогноза), ПДК $_{ ext{\tiny M.p.}}$.		
Номер точки	Координаты точки		Измеренное значение, доли ПДК м.р.	Расчетный метод	Аппроксимация данных постов методом обратных расстояний	Аппроксимация методом сопряжения расчетных и натурных данных
точка 1	2572	888	1,1000	0,6629	-0,175	0,160
точка 2	3854	1641	1,3200	1,1085	0,511	0,418
точка 3	4395	2285	2,4000	1,1200	1,003	-0,242
точка 4	4884	2883	1,9200	1,0300	0,520	0,200
точка 5	-1086	-305	2,1500	0,8800	0,510	0,290
точка 6	-1926	-547	2,1440	1,5559	0,282	-0,225
точка 7	1671	-1835	0,9500	1,1928	0,710	0,360
точка 8	1915	-1529	1,4500	0,7800	-0,240	0,400
точка 9	-3475	-9303	1,2700	0,9868	-0,429	0,240
точка 10	-7050	-7700	1,4200	1,3041	-0,054	-0,180
точка 11	-6275	-7825	1,9100	1,4654	-0,680	-0,192
точка 12	-7007	-13389	1,3500	1,0912	0,450	0,150
точка 13	-3779	-12804	2,1500	1,3200	-0,590	0,294
точка 14	-11580	2690	1,1000	0,1100	-0,365	-0,240
Средняя абсолютная ошибка ()			1,043	0,465	0,255	
Среднее квадратичное отклонение (σ)			1,101	0,521	0,2681	

Основные направления дальнейших исследований

- оптимизация сбора данных об источника опасности. Создание общедоступных, постоянно актуализируемых баз данных параметров источников
- исследование изменчивости параметров источников во времени
- изучение временных характеристик контакта разных контингентов с факторами опасности
- совершенствование методов сопряжение расчетных и натурных данных с целью снижения неопределенностей при оценке экспозиции
- расширение практики применения ГИС-технологий для задач оценки экспозиции и оценки риска

Спасибо за внимание Всероссийская научно-практическая конференция с международным участием «Актуальные проблемы безопасности и оценки риска здоровью населения при воздействии факторов среды обитания» 21-23 мая 2014 г. Пермь