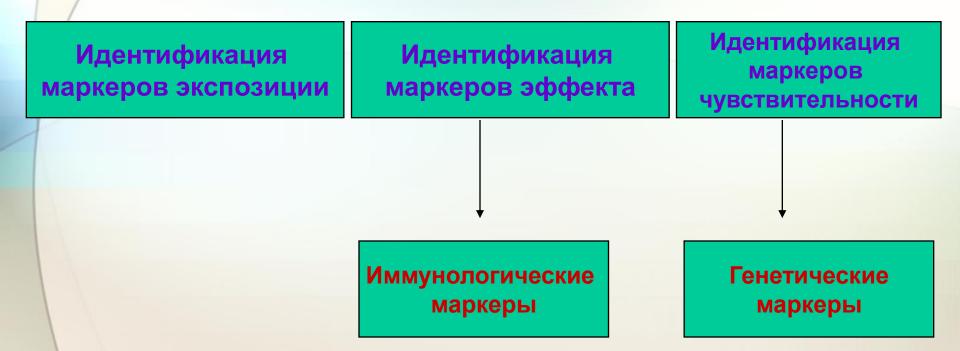
Принципы идентификации проявлений генетической и иммунной дезадаптации в условиях воздействия техногенных химических факторов

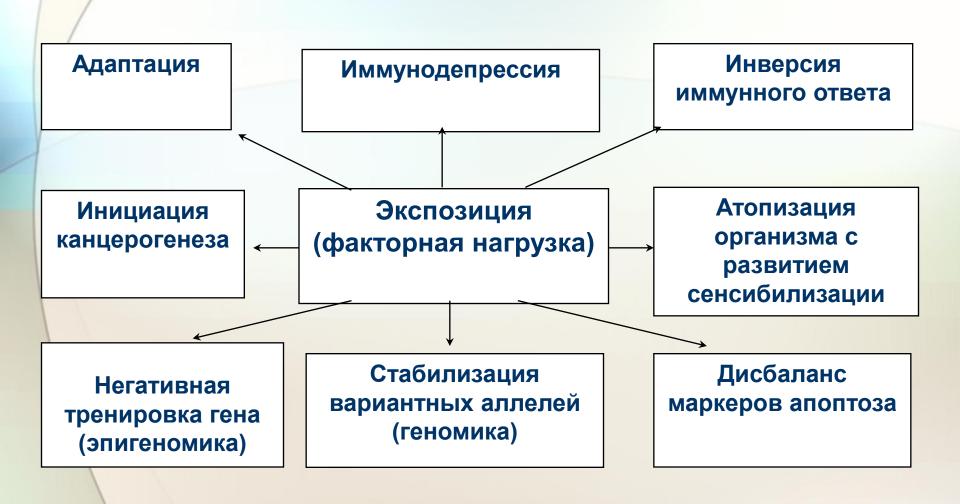
д.м.н. Долгих Олег Владимирович

ФБУН «ФНЦ МПТ управления рисками здоровью населения», г. Пермь


Актуальность

•Проблема иммуноопосредованных нарушений здоровья является актуальной для РФ, где население проживает и работает в условиях комбинированной экспозиции биологических, физических, химических и социальных факторов, обладающих мутагенным и иммунотоксическим действием

Место в системе оценки риска


Дизайн исследований

индивидуальный уровеньпопуляционный уровеньизучение системы«родители-дети»

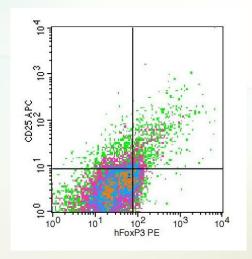
-контингент риска
-контингент сравнения
-референтный (цитируемый)
уровень (норма)

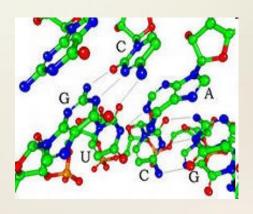
Стратификационные биологические уровни: -клеточный уровень -молекулярный уровень

Ассоциации факторной нагрузки с иммунными и генетическими адаптационными процессами

Задачи, решаемые идентификацией маркеров

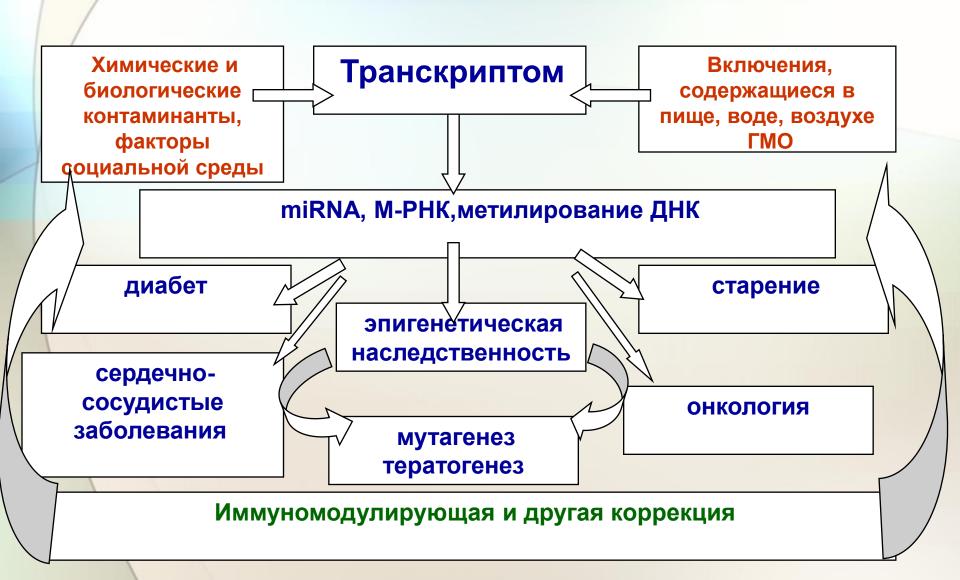
- эффекта и чувствительности
 Определение ранних нарушений в состоянии здоровья экспонированных групп и генетической предрасположенности к их развитию;
- Оценка специфической сенсибилизации к профессиональным аллергенам, в т.ч. к их наноформам (марганец);
- Оценка адекватности процесса запрограммированной клеточной гибели (от иммуносупрессии до канцерогенеза и аутоагрессии)
- Изучение и оценка репродуктивных нарушений с использованием патогенетических маркеров женского и мужского здоровья;
- Оценка комбинированного эффекта химической и вирусной контаминации;
- Оценка влияния экспозиции на формирование поствакцинального иммунитета;
- Изучение влияние пищевого фактора (нутриенты, пищевые добавки и ГМО) в геномике и эпигеномике
- Анализ ассоциаций аллелей генов в системах «гены родителей и гены ребенка» и «ген-рецептор-лиганд»
- Идентификация ключевых однонуклеотидных полиморфизмов
- Использование разработанной методологии для идентификации предрасположенности к наркомании, алкоголизму, табакокурению и др. видам патологического гемблинга
- Проведение индивидуальной и популяционной генодиагностики для установления риска развития конкретной патологии или наличия уникальных способностей
- Подбор и секвенирование «виновных» локусов генома, анализ транскриптома (экспрессии генов)


Технологии


- генетические ДНК-диагностика вирусных антигенов и генного полиморфизма (ПЦР в режиме реального времени термоциклер СFX96 «Биорад», США; секвенирование участков генома секвенатор Roche (454) Genome Sequencer, Швейцария) и анализ экспрессии генов
 - клеточное фенотипирование проточной цитометрией (проточный цитометр FACSCalibur фирмы «Becton Dickinson», USA)
 - специфическая аллергодиагностика определение специфических IgE и IgG к бытовым, пищевым, инфекционным и профессиональным аллергенам (конструктор)
- Типирование медиаторов иммуно-нейро-эндокринной регуляции (ИЛ1-бета, ИЛ 4, ИЛ-6, ИЛ-8, ИЛ-10, ИНФ-гамма, альфа-ФНО, р53, bcl2, Treg, АКТГ, серотонин, лейкотриены, фетальные белки и др.) ИФА с предварительным экстрагированием
- Эксперимент in vitro на культуре лимфоцитов с оценкой экспрессии мембранных, транскрипционных факторов, цитокинов и генов

Фундаментальные исследования

Организация и проведение фундаментальных исследований включает современные подходы:


- -геномика,
- эпигеномика,
- биоконструирование,
- митогенная индукция,
- анализ специфической экспрессии генов,
- оценка апоптоза на культурах иммуноцитов (ex vivo),
- секвенирование адресных экзонов и ампликонов генома человека

Эпигеномика

Технология генетических исследований с помощью полимеразной цепной реакции (ПЦР) в режиме реального времени

Диагностика антигенов оппортунистических вирусных инфекций, ассоциированных с иммунодефицитными состояниями (вирус Эпштейн-Барр - ЭБВ и вирус герпеса человека 6 типа - ВГЧ-6)

•Диагностика генного полиморфизма на уровне ДНК в условиях факторной нагрузки (гены-подсемейство цитохрома СҮР 1А1, МТНFR, GSTA4 (глутатион-трансфераза), СРОХ, SULT1A1, SOD2, ZMPSTE24 (цинкметаллопептидаза), ESR1, TERT, DRD2, SIRT1, TLR4 (толл-рецептор 4) PPAR FAS FOXP3 VEGF, APO-E, NO-синтаза, MMP, ACE, TNFальфа, p53, BRCA1, BRCA2)

Принципы верификации генетического полиморфизма

(маркеры чувствительности)

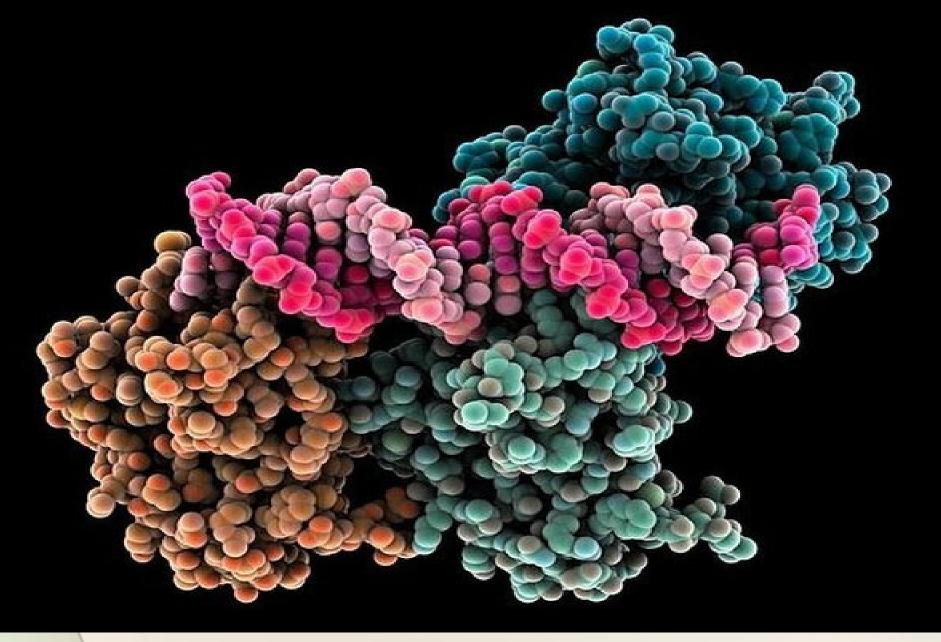
- Идентификация мутаций генов ферментов 1 и 2 фазы детоксикации (метаболизм и конъюгация) органических и металлоорганических соединений (лекарственные вещества, техногенные химические факторы) подсемейство генов цитохрома, метилентетрагидрофосфатредуктаза, глутатион-трансфераза, копропорфириноксидаза, сульфтрансаминаза, супероксиддисмутаза 2, цинк-металлопептидаза
- Полиморфизм генов белков, участвующих в патогенезе техногенных нарушений в органах-мишенях ген эластазы (легкие), ген эндотелиального фактора роста (эндотелий сосудов), ESR1-эстроген (женская репродуктивная сфера), DRD2-дофаминовый рецептор (нервная система), NO-синтаза (эндотелий сосудов) и обменных процессах TERT (теломераза), SIRT1 (сиртуин), семейство генов PRAR (энергетический обмен), APO-E-аполипопротеин (жировой обмен), ACE-ген ангиотензинконвертирующего фермента (общие обменные процессы), GCCR-глюкокортикоидный рецептор (углеводный обмен).

Принципы верификации генетического полиморфизма

(маркеры чувствительности)

- Генотипирование предрасположенности к онкопролиферативным состояниям ВКСА (онкология женской репродуктивной сферы), ММР-металлопротеиназа (онкология легких), ТЕКТ-теломераза (общая онкология), р53 (транскрипционный фактор, наличие которого препятствует развитию онкологического процесса)
- Определение иммуногенетических маркеров ТLR4 (толл-рецептор 4) (иммунный «сигнальный рецептор» опасности), FAS (цитокиновый рецептор запускающий апоптоз), FOXP3 (белок клеток супрессоров, выполняющий функцию торможения в иммунной системе), TNFальфа (цитокин), p53 (транскрипционный белок -внутриклеточный фактор апоптоза), HLA DR (фактор гистосовместимости)

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ Перечень маркеров генного полиморфизма, отвечающих за особенности мутагенной активности техногенных химических факторов МР 4.2.0075- 13 от 20.08.2013


Алгоритм ДНК-детекции

- /У детей забирали образцы ДНК со слизистой оболочки щеки
- Геномную ДНК выделяли с помощью фенол-хлороформной экстракции
- Для исследования полиморфных вариантов в изучаемых генах использовали методику ПЦР в режиме реального времени
- Амплификацию и детекцию осуществляли с помощью термоциклера CFX96, используя структуру праймеров и параметры температурных циклов, описанных в литературе
- Обработку полученных результатов проводили, используя аллельную дискриминацию
- Использованные методы позволяли различить гомозиготную замену от гетерозиготы и нормальной гомозиготы
- Статобработка данных по генотипированию проводилась с использованием унифицированной программы «Ген Эксперт», служащей для расчета статистических параметров для исследований "случай-контроль", использующих SNP.

Ген р53

Ген р53 - онкосупрессор, его продукт белок р53 контролирует ответ клетки на различные виды стресса, включая повреждения ДНК химическими и физическими агентами. Активация гена р53 ведет к остановке пролиферации клетки и к включению в ней программы апоптоза - запрограммированной клеточной гибели. Инактивация гена р53, наблюдаемая в большинстве опухолей, подтверждает его противоопухолевую функцию. Полиморфные варианты гена р53, по-видимому, снижают способность клеток к апоптозу, вследствие чего не происходит запрограммированного удаления дефектных клеток, что и является причиной опухолевого и опухолеподобного процесса. При этом неблагоприятные аллельные варианты генов системы детоксикации могут существенно усиливать клеточный стресс, который в значительной степени реализуется через экспрессию гена р53.

Модель взаимодействия р53 (коричневый-синий-зелёный) с ДНК (красный). Р53 является транскрипционным фактором, запускающим синтез белков апоптоза и клеточного цикла.

Распределение частот полиморфизмов генов VEGF, eNOS у детей, проживающих в зоне влияния шумовой и химической экспозиции

Генотип/ аллель		1 зона	2 зона		3 зона	контроль
	n=	22	19	17	16	25
VEGF	GG	63,5% (14)	58% (11)	53% (9)	50% (8)	72% (18)
	GC	32% (7)	37% (7)	23,5% (4)	31% (5)	20% (5)
	CC	4,5% (1)	5% (1)	23,5% (4)	19% (3)	8% (2)
1	G	80%	85%	65%	66%	82%
	C	20%	15%	35%	34%	18%
eNOS	GG	50% (11)	53% (10)	65% (11)	81% (13)	64% (16)
	GT	50% (11)	47% (9)	29% (5)	13% (2)	32% (8)
	TT	0% (0)	0% (0)	6% (1)	6% (1)	4% (1)
	G	75%	76%	79%	87,5%	80%
	T	25%	24%	21%	12,5%	20%

Анализ системы «ген-рецептор-лиганд»

Иммунологические показатели у работников промышленного производства с разными вариантами гена *TNFA* (G-308A)

Ген <i>TNFA</i> (rs1800629)	ИФА TNF-α, пг/см ³	ИФА IFN-γ, пг/см ³	TNFRI,	p53, %	Annexin V,	7-AAD, %
AA (2)	1,07±1,06	0,01±0,00	1,36±0,04	1,73±0,29	2,55±0,03	10,32±0,59
AG (16)	1,45±0,33	2,48±0,68*	2,36±0,36*	2,27±0,33*	2,80±0,22	9,43±0,55
GG (42)	1,44±0,25	4,90±0,87	1,59±0,11	1,60±0,12	2,47±0,12	8,61±0,24

^{* –} достоверность между аллелями GG и AG при *p*<0,05

Иммунологические показатели у взрослых, не задействованных на промышленном производстве, с разными вариантами гена *TNFA* (G-308A)

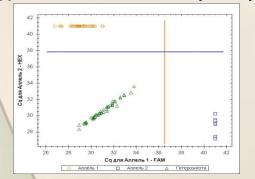
Ген <i>TNFA</i> (rs1800629)	ИФА TNF-α, пг/см ³	ИФА IFN-γ, пг/см ³	TNFRI,	p53, %	Annexin V, %	7-AAD, %
GG (24)	0,48±0,10**	1,76±0,28**	3,31±0,27**	3,42±0,29**	3,09±0,20**	6,96±0,51**

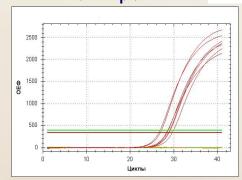
^{** –} достоверность аллеля GG между работниками производства и людьми, не задействованными на производстве при p<0,05

Анализ особенностей наследования в системе «мать-ребенок»

- Обследовано 89 пар «матьребенок»: 25 пар - с контрольной территории, 64 пары - с зон риска воздействия шума и химического фактора.
- Исследуемые гены: VEGF (-94C>G), CPOX (814A>C), MMP9, MMP12 (1070A>G), TNFA (G4682A), CYP1A1 (6310G>A), eNOS (894G>T), P53 (215C>G)

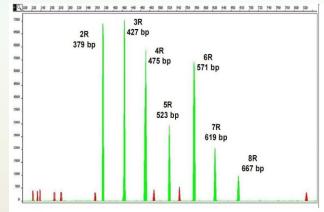
Анализ особенностей наследования в системе «мать-ребенок»

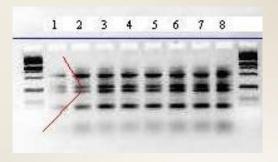

Территория	Кол-во обследуем ых пар	Пары с патологической гомозиготой	Дети с патологической гомозиготой	Мамы с патологической гомозиготой
Контроль	25	14 (56%) CPOX/MMP9/eNOS	9 (64%) VEGF/eNOS	5 (36%)
Зона 1	19	8 (42%) TNFA	5 (63%) TNFA(zem 53%)	3 (37%)
Зона 2	31	17 (55%) VEGF P53	9 (53%) VEGF/P53/CPOX	8 (47%)
Зона З	14	8 (57%) VEGF/MMP9/P53	7 (88%) VEGF/MMP9/P53	1 (12%)

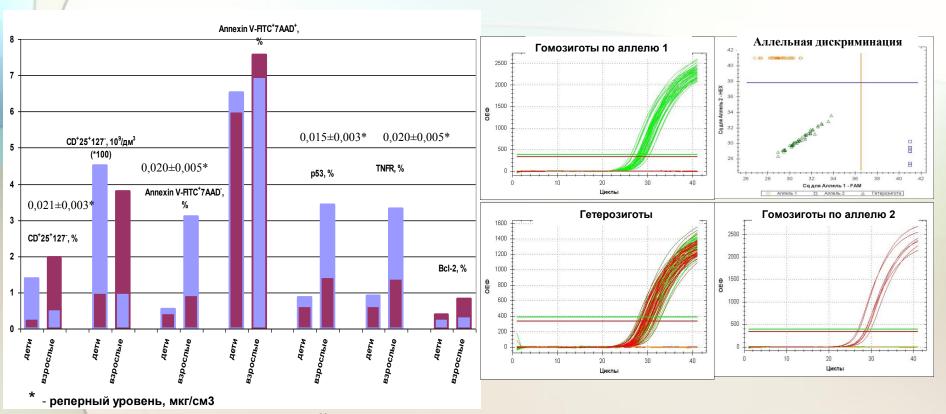

Технология и результаты секвенирования

генома человека

Проведены исследования по расшифровке участка генома человека. Идентифицированы распределения аллельных вариантов по тандемным генетическим маркерам гена DRD2 (5 экзон), которые характеризуются высоким уровнем полиморфизма и гетерозиготности.


Идентифицирован полиморфизм триплетных повторов микро- и минисателлитных локусов. Выявлены тандемные повторы встречающиеся в геноме с частотой 5, 8 и 3 раза. Полученные результаты сиквенса расширяют возможности изучения однонуклеотидных полиморфизмов и позволяют оценить генетическое разнообразие в различных условиях природных и техногенных факторных комбинаций




Технология проточной цитометрии

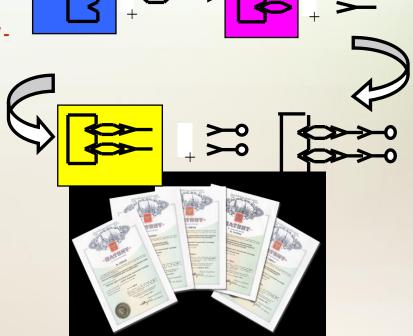
- определение субпопуляций лимфоцитов (CD3+, CD3+CD4+, CD3+CD8+, CD19+, CD16+CD56+, CD3+CD25+, CD3+CD95+);
- определение уровня апоптоза лимфоцитов с помощью окрашивания Аннексин V-FITC (Annexin) и пропидиум йодид (Propidium lodide)
- определение T-reg клеток, супрессирующих иммунный ответ.
- Определение трансформирующего фактора p53 и ФНО-альфа, регулирующих жизненный цикл клетки.
- Определение внутриклеточных маркеров апоптоза: bcl-2, bax, bad

BD FACSCalibur

Особенности показателей апоптоза и полиморфизма генов у взрослых и их детей в условиях комбинированной экспозиции (шум, металлы, органические соединения)

Одновременное воздействие комплекса физических (шум) и химических (органические соединения и металлы) факторов внешней и производственной среды усугубляет нарушение апоптоза и способствует передаче рецессивной генетической информации потомству

Характеристика апоптоза у работающих в эксперименте с бензолом, % (M±m)


Показатель	Проба без добавления бензола	Проба с концентрацией бензола 0,005мг/л
	Стаж 7,00±0,90 лет	
Annexin V-FITC+7AAD-	0,94±0,07	1,18±0,08*
Annexin V-FITC+7AAD+	6,81±0,65	7,12±0,92
	Стаж 16,00±1,88 лет	
Annexin V-FITC+7AAD-	1,27±0,13	1,17±0,22
Annexin V-FITC+7AAD+	8,02±1,51	6,98±1,03

Технология идентификации специфических антигаптенных антител

• Разработана оригинальная каскадная технология изготовления белково-полисахаридного иммуносорбента с конъюгированием гаптена для идентификации специфических антител к металлам и органическим соединениям («Способ оценки сенсибилизации к металлам-аллергенам», Патент РФ на изобретение № 2185626 от 20.07.02.; «Способ количественного определения специфических иммуноглобулинов G к конъюгату формальдегид-сывороточный человеческий альбумин в сыворотке крови» Патент РФ № 2473908 от 27.01.2013). Метод модифицированного конкурентного иммуноферментного анализа изложен в МР 111-14/55-04-02

• Использование технологии аллергосорбентного теста позволяет идентифицировать специфическую чувствительность к профессиональным аллергенам (специфический IgE к хрому, никелю, марганцу, формальдегиду, специфический IgG к бенз(а)пирену, ванадию), повысить эффективность диагностики, лечения и профилактики заболеваний, ассоциированных с профессиональными и внешнесредовыми экспозициями

Вещества, вызывающие выработку специфических реагинов

Входящие в список профессиональных аллергенов

Не входящие в список профессиональных аллергенов

Хром

Никель

Марганец

Кобальт

Формальдегид

Бензол Бенз(а)пирен

Ванадий Кремний

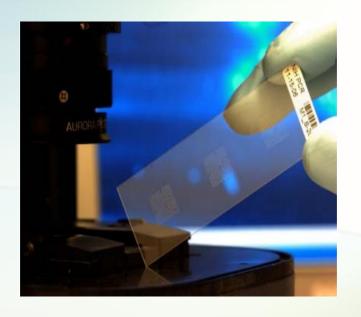
Свинец Стронций

Фенол

Уровень специфической сенсибилизации детского населения г. Нижний Тагил

Показатель	Физиологическая норма	Группа сравнения (n=57)	Группа наблюдения (n=113)
IgE спец. к марганцу, МЕ/см ³	0-1,21	1,148±0,579	1,135±0,372
IgE спец. к никелю, МЕ/см ³	0-1,55	1,014±0,349*	0,308±0,083
IgE спец. к формальдегиду, МЕ/см ³	0-1,5	1,01±0,628	1,207±0,416**
IgG спец. к бенз(а)пирену, у.е	0-0,3	0,122±0,074	0,134±0,038
IgG спец. к ванадию, у.е	0-0,11	0,127±0,062	0,143±0,037**
IgG спец. к бензолу, у.е	0-0,15	0,187±0,093	0,143±0,031**
IgG спец. к фенолу, у.е	0-0,13	0,049±0,054	0,147±0,049*/**

Примечание: * - достоверные межгрупповые различия (р<0,05);


** - достоверные различия с нормой (p<0,05).

Преимущественные проявления иммунной и генетической дезадаптации, сопряженной с факторной нагрузкой

- измененная генетика, ассоциированная с распространенностью минорных аллелей генов иммунной регуляции, детоксикации, онкопредрасположенности
- снижение кластеров дифференцировки CD4, CD16, CD56,
- повышение кластеров дифференцировки CD19, CD25, CD95,
- дисбаланс мембранных и внутриклеточных факторов апоптоза (ФНОальфа, bcl-2, bax, bad)
- преимущественное замедление жизненного цикла клеток на стадии апоптоза (угнетение экспрессии лимфоцитов в аннексиновом тесте)
- дефицит транскрипционного фактора p53, CD127-(T-per)
- гиперпродукция медиаторов аллергии: специфических иммуноглобулинов Е и G, лейкотриенов LTC4/D4/E4
- цитокиновый дисбаланс (дисбаланс ИЛ4, ИЛ6, ИЛ10↑, ИФНгамма, ФНОальфа↓

Резюме

Изложенные подходы и принципы идентификации проявлений генетической и иммунной дезадаптации позволяют подобрать оптимальное сочетание маркеров эффекта и чувствительности для доказательства вреда здоровью в условиях экспозиции техногенными факторами

Благодарю за внимание!!!

