

(19) **RU** (11) **2 184 973** (13) **C1** (51) Int. Cl.⁷ **G 01 N 33/84**

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 2001114386/14, 24.05.2001

(24) Effective date for property rights: 24.05.2001

(46) Date of publication: 10.07.2002

(98) Mail address: 614001, g.Perm', ul. Ordzhonikidze, 82, Permskij NIKI detskoj ehkopatologii, T.S.Ulanovoj (71) Applicant:
Permskij nauchno-issledovatel'skij
klinicheskij institut detskoj ehkopatologii

(72) Inventor: Zajtseva N.V., Ulanova T.S., Plakhova L.V., Suetina G.N., Stenno E.V.

(73) Proprietor:
Permskij nauchno-issledovatel'skij
klinicheskij institut detskoj ehkopatologii

(54) METHOD TO DETERMINE THE CONTENT OF HARD METALS IN WHOLE BLOOD

(57) Abstract:

FIELD: medicine. SUBSTANCE: the tested sample is treated with an acid followed by its ashing, the ash obtained is treated with a concentrated mineral acid followed by evaporation up to the state of a moist salt, then a background solution is conducted and the content of metals is determined by the instrumental method. As an acid to treat the sample tested and as a background solution one should use 0.5-5.0% aqueous solution of nitric acid at the sample: acid weight ratio being 1:1. Moreover, before ashing the

sample should be dried in two stages at 110 C and 250 C, correspondingly; ashing is conducted at 430 C. As a concentrated mineral acid to treat the obtained ash it is necessary to use a concentrated nitric acid and as an instrumental method one should use an atom-absorptive spectrophotometry. EFFECT: higher accuracy of determination, broadened spectrum of detected components within 1-6 samples at their mutual availability (manganese, lead, nickel, zinc, copper, chromium) and decreased volume of biomaterial necessary for an assay. 1 cl, 3 tbl

2 1 8

ი .